Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fine-To-Coarse Global Registration of RGB-D Scans (1607.08539v3)

Published 28 Jul 2016 in cs.CV

Abstract: RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.