Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Energy-Efficient Real-Time Scheduling for Two-Type Heterogeneous Multiprocessors (1607.07763v1)

Published 15 Jul 2016 in cs.DC, cs.OS, cs.SY, and math.OC

Abstract: We propose three novel mathematical optimization formulations that solve the same two-type heterogeneous multiprocessor scheduling problem for a real-time taskset with hard constraints. Our formulations are based on a global scheduling scheme and a fluid model. The first formulation is a mixed-integer nonlinear program, since the scheduling problem is intuitively considered as an assignment problem. However, by changing the scheduling problem to first determine a task workload partition and then to find the execution order of all tasks, the computation time can be significantly reduced. Specifically, the workload partitioning problem can be formulated as a continuous nonlinear program for a system with continuous operating frequency, and as a continuous linear program for a practical system with a discrete speed level set. The task ordering problem can be solved by an algorithm with a complexity that is linear in the total number of tasks. The work is evaluated against existing global energy/feasibility optimal workload allocation formulations. The results illustrate that our algorithms are both feasibility optimal and energy optimal for both implicit and constrained deadline tasksets. Specifically, our algorithm can achieve up to 40% energy saving for some simulated tasksets with constrained deadlines. The benefit of our formulation compared with existing work is that our algorithms can solve a more general class of scheduling problems due to incorporating a scheduling dynamic model in the formulations and allowing for a time-varying speed profile. Moreover, our algorithms can be applied to both online and offline scheduling schemes.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube