Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scaling Sampling-based Motion Planning to Humanoid Robots (1607.07470v2)

Published 25 Jul 2016 in cs.RO

Abstract: Planning balanced and collision-free motion for humanoid robots is non-trivial, especially when they are operated in complex environments, such as reaching targets behind obstacles or through narrow passages. We propose a method that allows us to apply existing sampling--based algorithms to plan trajectories for humanoids by utilizing a customized state space representation, biased sampling strategies, and a steering function based on a robust inverse kinematics solver. Our approach requires no prior offline computation, thus one can easily transfer the work to new robot platforms. We tested the proposed method solving practical reaching tasks on a 38 degrees-of-freedom humanoid robot, NASA Valkyrie, showing that our method is able to generate valid motion plans that can be executed on advanced full-size humanoid robots. We also present a benchmark between different motion planning algorithms evaluated on a variety of reaching motion problems. This allows us to find suitable algorithms for solving humanoid motion planning problems, and to identify the limitations of these algorithms.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.