Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees (1607.06883v3)

Published 23 Jul 2016 in cs.DC and cs.DS

Abstract: This paper presents a randomized Las Vegas distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in $\tilde{O}(D + \sqrt{n})$ time and exchanges $\tilde{O}(m)$ messages (both with high probability), where $n$ is the number of nodes of the network, $D$ is the diameter, and $m$ is the number of edges. This is the first distributed MST algorithm that matches \emph{simultaneously} the time lower bound of $\tilde{\Omega}(D + \sqrt{n})$ [Elkin, SIAM J. Comput. 2006] and the message lower bound of $\Omega(m)$ Kutten et al., J.ACM 2015. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower bound construction that shows one lower bound {\em does not} work for the other. To complement our algorithm, we present a new lower bound graph construction for which any distributed MST algorithm requires \emph{both} $\tilde{\Omega}(D + \sqrt{n})$ rounds and $\Omega(m)$ messages.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.