Papers
Topics
Authors
Recent
2000 character limit reached

Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations (1607.06565v3)

Published 22 Jul 2016 in stat.ME, cs.SI, and physics.soc-ph

Abstract: Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, i.e., with a node's network partners being informative about the node's attributes and therefore its behavior. If the network grows according to either a latent community (stochastic block) model, or a continuous latent space model, then latent homophilous attributes can be consistently estimated from the global pattern of social ties. We show that, for common versions of those two network models, these estimates are so informative that controlling for estimated attributes allows for asymptotically unbiased and consistent estimation of social-influence effects in linear models. In particular, the bias shrinks at a rate which directly reflects how much information the network provides about the latent attributes. These are the first results on the consistent non-experimental estimation of social-influence effects in the presence of latent homophily, and we discuss the prospects for generalizing them.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.