Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Hierarchical Attention Network for Action Recognition in Videos (1607.06416v1)

Published 21 Jul 2016 in cs.CV

Abstract: Understanding human actions in wild videos is an important task with a broad range of applications. In this paper we propose a novel approach named Hierarchical Attention Network (HAN), which enables to incorporate static spatial information, short-term motion information and long-term video temporal structures for complex human action understanding. Compared to recent convolutional neural network based approaches, HAN has following advantages (1) HAN can efficiently capture video temporal structures in a longer range; (2) HAN is able to reveal temporal transitions between frame chunks with different time steps, i.e. it explicitly models the temporal transitions between frames as well as video segments and (3) with a multiple step spatial temporal attention mechanism, HAN automatically learns important regions in video frames and temporal segments in the video. The proposed model is trained and evaluated on the standard video action benchmarks, i.e., UCF-101 and HMDB-51, and it significantly outperforms the state-of-the arts

Citations (82)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.