Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interleaving Optimization with Sampling-Based Motion Planning (IOS-MP): Combining Local Optimization with Global Exploration (1607.06374v2)

Published 21 Jul 2016 in cs.RO

Abstract: Computing globally optimal motion plans for a robot is challenging in part because it requires analyzing a robot's configuration space simultaneously from both a macroscopic viewpoint (i.e., considering paths in multiple homotopic classes) and a microscopic viewpoint (i.e., locally optimizing path quality). We introduce Interleaved Optimization with Sampling-based Motion Planning (IOS-MP), a new method that effectively combines global exploration and local optimization to quickly compute high quality motion plans. Our approach combines two paradigms: (1) asymptotically-optimal sampling-based motion planning, which is effective at global exploration but relatively slow at locally refining paths, and (2) optimization-based motion planning, which locally optimizes paths quickly but lacks a global view of the configuration space. IOS-MP iteratively alternates between global exploration and local optimization, sharing information between the two, to improve motion planning efficiency. We evaluate IOS-MP as it scales with respect to dimensionality and complexity, as well as demonstrate its effectiveness on a 7-DOF manipulator for tasks specified using goal configurations and workspace goal regions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.