Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dataset and Neural Recurrent Sequence Labeling Model for Open-Domain Factoid Question Answering (1607.06275v2)

Published 21 Jul 2016 in cs.CL, cs.AI, and cs.NE

Abstract: While question answering (QA) with neural network, i.e. neural QA, has achieved promising results in recent years, lacking of large scale real-word QA dataset is still a challenge for developing and evaluating neural QA system. To alleviate this problem, we propose a large scale human annotated real-world QA dataset WebQA with more than 42k questions and 556k evidences. As existing neural QA methods resolve QA either as sequence generation or classification/ranking problem, they face challenges of expensive softmax computation, unseen answers handling or separate candidate answer generation component. In this work, we cast neural QA as a sequence labeling problem and propose an end-to-end sequence labeling model, which overcomes all the above challenges. Experimental results on WebQA show that our model outperforms the baselines significantly with an F1 score of 74.69% with word-based input, and the performance drops only 3.72 F1 points with more challenging character-based input.

Citations (91)

Summary

We haven't generated a summary for this paper yet.