Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Feature Descriptors for Tracking by Detection: a Benchmark (1607.06178v1)

Published 21 Jul 2016 in cs.CV

Abstract: In this paper, we provide an extensive evaluation of the performance of local descriptors for tracking applications. Many different descriptors have been proposed in the literature for a wide range of application in computer vision such as object recognition and 3D reconstruction. More recently, due to fast key-point detectors, local image features can be used in online tracking frameworks. However, while much effort has been spent on evaluating their performance in terms of distinctiveness and robustness to image transformations, very little has been done in the contest of tracking. Our evaluation is performed in terms of distinctiveness, tracking precision and tracking speed. Our results show that binary descriptors like ORB or BRISK have comparable results to SIFT or AKAZE due to a higher number of key-points.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.