Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Local-Global Approach to Semantic Segmentation in Aerial Images (1607.05620v1)

Published 19 Jul 2016 in cs.CV

Abstract: Aerial images are often taken under poor lighting conditions and contain low resolution objects, many times occluded by other objects. In this domain, visual context could be of great help, but there are still very few papers that consider context in aerial image understanding and still remains an open problem in computer vision. We propose a dual-stream deep neural network that processes information along two independent pathways. Our model learns to combine local and global appearance in a complementary way, such that together form a powerful classifier. We test our dual-stream network on the task of buildings segmentation in aerial images and obtain state-of-the-art results on the Massachusetts Buildings Dataset. We study the relative importance of local appearance versus the larger scene, as well as their performance in combination on three new buildings datasets. We clearly demonstrate the effectiveness of visual context in conjunction with deep neural networks for aerial image understanding.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)