Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Higher-Order Block Term Decomposition for Spatially Folded fMRI Data (1607.05073v1)

Published 15 Jul 2016 in cs.NA and stat.ML

Abstract: The growing use of neuroimaging technologies generates a massive amount of biomedical data that exhibit high dimensionality. Tensor-based analysis of brain imaging data has been proved quite effective in exploiting their multiway nature. The advantages of tensorial methods over matrix-based approaches have also been demonstrated in the characterization of functional magnetic resonance imaging (fMRI) data, where the spatial (voxel) dimensions are commonly grouped (unfolded) as a single way/mode of the 3-rd order array, the other two ways corresponding to time and subjects. However, such methods are known to be ineffective in more demanding scenarios, such as the ones with strong noise and/or significant overlapping of activated regions. This paper aims at investigating the possible gains from a better exploitation of the spatial dimension, through a higher- (4 or 5) order tensor modeling of the fMRI signal. In this context, and in order to increase the degrees of freedom of the modeling process, a higher-order Block Term Decomposition (BTD) is applied, for the first time in fMRI analysis. Its effectiveness is demonstrated via extensive simulation results.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube