Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Improved Algorithm for Incremental DFS Tree in Undirected Graphs (1607.04913v3)

Published 17 Jul 2016 in cs.DS

Abstract: Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges, the textbook algorithm takes $O(n+m)$ time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in $O(n)$ worst case time per operation, and requires $O\left(\min{m \log n, n2}\right)$ preprocessing time. Our result improves the previous $O(n \log3 n)$ worst case update time algorithm by Baswana et al. and the $O(n \log n)$ time by Nakamura and Sadakane, and matches the trivial $\Omega(n)$ lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.