Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The complexity of tropical graph homomorphisms (1607.04777v2)

Published 16 Jul 2016 in cs.DS, cs.DM, and math.CO

Abstract: A tropical graph $(H,c)$ consists of a graph $H$ and a (not necessarily proper) vertex-colouring $c$ of $H$. Given two tropical graphs $(G,c_1)$ and $(H,c)$, a homomorphism of $(G,c_1)$ to $(H,c)$ is a standard graph homomorphism of $G$ to $H$ that also preserves the vertex-colours. We initiate the study of the computational complexity of tropical graph homomorphism problems. We consider two settings. First, when the tropical graph $(H,c)$ is fixed; this is a problem called $(H,c)$-COLOURING. Second, when the colouring of $H$ is part of the input; the associated decision problem is called $H$-TROPICAL-COLOURING. Each $(H,c)$-COLOURING problem is a constraint satisfaction problem (CSP), and we show that a complexity dichotomy for the class of $(H,c)$-COLOURING problems holds if and only if the Feder-Vardi Dichotomy Conjecture for CSPs is true. This implies that $(H,c)$-COLOURING problems form a rich class of decision problems. On the other hand, we were successful in classifying the complexity of at least certain classes of $H$-TROPICAL-COLOURING problems.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.