Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Stochastic Recursive Inclusions with Non-Additive Iterate-Dependent Markov Noise (1607.04735v1)

Published 16 Jul 2016 in cs.SY

Abstract: In this paper we study the asymptotic behavior of stochastic approximation schemes with set-valued drift function and non-additive iterate-dependent Markov noise. We show that a linearly interpolated trajectory of such a recursion is an asymptotic pseudotrajectory for the flow of a limiting differential inclusion obtained by averaging the set-valued drift function of the recursion w.r.t. the stationary distributions of the Markov noise. The limit set theorem in [1] is then used to characterize the limit sets of the recursion in terms of the dynamics of the limiting differential inclusion. We then state two variants of the Markov noise assumption under which the analysis of the recursion is similar to the one presented in this paper. Scenarios where our recursion naturally appears are presented as applications. These include controlled stochastic approximation, subgradient descent, approximate drift problem and analysis of discontinuous dynamics all in the presence of non-additive iterate-dependent Markov noise.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.