Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neural Discourse Modeling of Conversations (1607.04576v1)

Published 15 Jul 2016 in cs.CL and cs.NE

Abstract: Deep neural networks have shown recent promise in many language-related tasks such as the modeling of conversations. We extend RNN-based sequence to sequence models to capture the long range discourse across many turns of conversation. We perform a sensitivity analysis on how much additional context affects performance, and provide quantitative and qualitative evidence that these models are able to capture discourse relationships across multiple utterances. Our results quantifies how adding an additional RNN layer for modeling discourse improves the quality of output utterances and providing more of the previous conversation as input also improves performance. By searching the generated outputs for specific discourse markers we show how neural discourse models can exhibit increased coherence and cohesion in conversations.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.