Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Black Box Linear Algebra: Extending Wiedemann's Analysis of a Sparse Matrix Preconditioner for Computations over Small Fields (1607.04514v1)

Published 15 Jul 2016 in cs.NA

Abstract: Wiedemann's paper, introducing his algorithm for sparse and structured matrix computations over arbitrary fields, also presented a pair of matrix preconditioners for computations over small fields. The analysis of the second of these is extended in order to provide more explicit statements of the expected number of nonzero entries in the matrices obtained as well as bounds on the probability that such matrices have maximal rank. This is part of ongoing work to establish that this matrix preconditioner can also be used to bound the number of nontrivial nilpotent blocks in the Jordan normal form of a preconditioned matrix, in such a way that one can also sample uniformly from the null space of the originally given matrix. If successful this will result in a black box algorithm for the type of matrix computation required when using the number field sieve for integer factorization that is provably reliable and - by a small factor - asymptotically more efficient than alternative techniques that make use of other matrix preconditioners or require computations over field extensions.

Summary

We haven't generated a summary for this paper yet.