Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Black Box Linear Algebra: Extending Wiedemann's Analysis of a Sparse Matrix Preconditioner for Computations over Small Fields (1607.04514v1)

Published 15 Jul 2016 in cs.NA

Abstract: Wiedemann's paper, introducing his algorithm for sparse and structured matrix computations over arbitrary fields, also presented a pair of matrix preconditioners for computations over small fields. The analysis of the second of these is extended in order to provide more explicit statements of the expected number of nonzero entries in the matrices obtained as well as bounds on the probability that such matrices have maximal rank. This is part of ongoing work to establish that this matrix preconditioner can also be used to bound the number of nontrivial nilpotent blocks in the Jordan normal form of a preconditioned matrix, in such a way that one can also sample uniformly from the null space of the originally given matrix. If successful this will result in a black box algorithm for the type of matrix computation required when using the number field sieve for integer factorization that is provably reliable and - by a small factor - asymptotically more efficient than alternative techniques that make use of other matrix preconditioners or require computations over field extensions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)