Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improving Viterbi is Hard: Better Runtimes Imply Faster Clique Algorithms (1607.04229v2)

Published 14 Jul 2016 in cs.CC and cs.DS

Abstract: The classic algorithm of Viterbi computes the most likely path in a Hidden Markov Model (HMM) that results in a given sequence of observations. It runs in time $O(Tn2)$ given a sequence of $T$ observations from a HMM with $n$ states. Despite significant interest in the problem and prolonged effort by different communities, no known algorithm achieves more than a polylogarithmic speedup. In this paper, we explain this difficulty by providing matching conditional lower bounds. We show that the Viterbi algorithm runtime is optimal up to subpolynomial factors even when the number of distinct observations is small. Our lower bounds are based on assumptions that the best known algorithms for the All-Pairs Shortest Paths problem (APSP) and for the Max-Weight $k$-Clique problem in edge-weighted graphs are essentially tight. Finally, using a recent algorithm by Green Larsen and Williams for online Boolean matrix-vector multiplication, we get a $2{\Omega(\sqrt {\log n})}$ speedup for the Viterbi algorithm when there are few distinct transition probabilities in the HMM.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.