Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Common-Message Broadcast Channels with Feedback in the Nonasymptotic Regime: Stop Feedback (1607.03519v2)

Published 12 Jul 2016 in cs.IT and math.IT

Abstract: We investigate the maximum coding rate for a given average blocklength and error probability over a K-user discrete memoryless broadcast channel for the scenario where a common message is transmitted using variable-length stop-feedback codes. For the point-to-point case, Polyanskiy et al. (2011) demonstrated that variable-length coding combined with stop-feedback significantly increases the speed of convergence of the maximum coding rate to capacity. This speed-up manifests itself in the absence of a square-root penalty in the asymptotic expansion of the maximum coding rate for large blocklengths, i.e., zero dispersion. In this paper, we present nonasymptotic achievability and converse bounds on the maximum coding rate of the common-message K-user discrete memoryless broadcast channel, which strengthen and generalize the ones reported in Trillingsgaard et al. (2015) for the two-user case. An asymptotic analysis of these bounds reveals that zero dispersion cannot be achieved for certain common-message broadcast channels (e.g., the binary symmetric broadcast channel). Furthermore, we identify conditions under which our converse and achievability bounds are tight up to the second order. Through numerical evaluations, we illustrate that our second-order expansions approximate accurately the maximum coding rate and that the speed of convergence to capacity is indeed slower than for the point-to-point case.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube