Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Tight lower bounds for the complexity of multicoloring (1607.03432v3)

Published 12 Jul 2016 in cs.DS and cs.CC

Abstract: In the multicoloring problem, also known as ($a$:$b$)-coloring or $b$-fold coloring, we are given a graph G and a set of $a$ colors, and the task is to assign a subset of $b$ colors to each vertex of G so that adjacent vertices receive disjoint color subsets. This natural generalization of the classic coloring problem (the $b=1$ case) is equivalent to finding a homomorphism to the Kneser graph $KG_{a,b}$, and gives relaxations approaching the fractional chromatic number. We study the complexity of determining whether a graph has an ($a$:$b$)-coloring. Our main result is that this problem does not admit an algorithm with running time $f(b)\cdot 2{o(\log b)\cdot n}$, for any computable $f(b)$, unless the Exponential Time Hypothesis (ETH) fails. A $(b+1)n\cdot \text{poly}(n)$-time algorithm due to Nederlof [2008] shows that this is tight. A direct corollary of our result is that the graph homomorphism problem does not admit a $2{O(n+h)}$ algorithm unless ETH fails, even if the target graph is required to be a Kneser graph. This refines the understanding given by the recent lower bound of Cygan et al. [SODA 2016]. The crucial ingredient in our hardness reduction is the usage of detecting matrices of Lindstr\"om [Canad. Math. Bull., 1965], which is a combinatorial tool that, to the best of our knowledge, has not yet been used for proving complexity lower bounds. As a side result, we prove that the running time of the algorithms of Abasi et al. [MFCS 2014] and of Gabizon et al. [ESA 2015] for the r-monomial detection problem are optimal under ETH.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube