Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting the evolution of stationary graph signals (1607.03313v1)

Published 12 Jul 2016 in stat.ML and cs.LG

Abstract: An emerging way of tackling the dimensionality issues arising in the modeling of a multivariate process is to assume that the inherent data structure can be captured by a graph. Nevertheless, though state-of-the-art graph-based methods have been successful for many learning tasks, they do not consider time-evolving signals and thus are not suitable for prediction. Based on the recently introduced joint stationarity framework for time-vertex processes, this letter considers multivariate models that exploit the graph topology so as to facilitate the prediction. The resulting method yields similar accuracy to the joint (time-graph) mean-squared error estimator but at lower complexity, and outperforms purely time-based methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.