Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

How to calculate partition functions using convex programming hierarchies: provable bounds for variational methods (1607.03183v1)

Published 11 Jul 2016 in cs.LG, cs.DS, and stat.ML

Abstract: We consider the problem of approximating partition functions for Ising models. We make use of recent tools in combinatorial optimization: the Sherali-Adams and Lasserre convex programming hierarchies, in combination with variational methods to get algorithms for calculating partition functions in these families. These techniques give new, non-trivial approximation guarantees for the partition function beyond the regime of correlation decay. They also generalize some classical results from statistical physics about the Curie-Weiss ferromagnetic Ising model, as well as provide a partition function counterpart of classical results about max-cut on dense graphs \cite{arora1995polynomial}. With this, we connect techniques from two apparently disparate research areas -- optimization and counting/partition function approximations. (i.e. #-P type of problems). Furthermore, we design to the best of our knowledge the first provable, convex variational methods. Though in the literature there are a host of convex versions of variational methods \cite{wainwright2003tree, wainwright2005new, heskes2006convexity, meshi2009convexifying}, they come with no guarantees (apart from some extremely special cases, like e.g. the graph has a single cycle \cite{weiss2000correctness}). We consider dense and low threshold rank graphs, and interestingly, the reason our approach works on these types of graphs is because local correlations propagate to global correlations -- completely the opposite of algorithms based on correlation decay. In the process we design novel entropy approximations based on the low-order moments of a distribution. Our proof techniques are very simple and generic, and likely to be applicable to many other settings other than Ising models.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)