Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Inexact Block Coordinate Descent Methods For Symmetric Nonnegative Matrix Factorization (1607.03092v1)

Published 11 Jul 2016 in cs.NA and cs.DC

Abstract: Symmetric nonnegative matrix factorization (SNMF) is equivalent to computing a symmetric nonnegative low rank approximation of a data similarity matrix. It inherits the good data interpretability of the well-known nonnegative matrix factorization technique and have better ability of clustering nonlinearly separable data. In this paper, we focus on the algorithmic aspect of the SNMF problem and propose simple inexact block coordinate decent methods to address the problem, leading to both serial and parallel algorithms. The proposed algorithms have guaranteed stationary convergence and can efficiently handle large-scale and/or sparse SNMF problems. Extensive simulations verify the effectiveness of the proposed algorithms compared to recent state-of-the-art algorithms.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.