Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Salient Region Detection and Segmentation in Images using Dynamic Mode Decomposition (1607.03021v1)

Published 11 Jul 2016 in cs.CV

Abstract: Visual Saliency is the capability of vision system to select distinctive parts of scene and reduce the amount of visual data that need to be processed. The presentpaper introduces (1) a novel approach to detect salient regions by considering color and luminance based saliency scores using Dynamic Mode Decomposition (DMD), (2) a new interpretation to use DMD approach in static image processing. This approach integrates two data analysis methods: (1) Fourier Transform, (2) Principle Component Analysis.The key idea of our work is to create a color based saliency map. This is based on the observation thatsalient part of an image usually have distinct colors compared to the remaining portion of the image. We have exploited the power of different color spaces to model the complex and nonlinear behavior of human visual system to generate a color based saliency map. To further improve the effect of final saliency map, weutilized luminance information exploiting the fact that human eye is more sensitive towards brightness than color.The experimental results shows that our method based on DMD theory is effective in comparison with previous state-of-art saliency estimation approaches. The approach presented in this paperis evaluated using ROC curve, F-measure rate, Precision-Recall rate, AUC score etc.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.