Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fine-Grained Complexity Analysis of Two Classic TSP Variants (1607.02725v1)

Published 10 Jul 2016 in cs.DS and cs.CG

Abstract: We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of $n$ points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in $O(n2)$ time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in $O(n \log2 n)$ time and its bottleneck version in $O(n \log3 n)$ time. Our second set of results concerns the popular $k$-OPT heuristic for TSP in the graph setting. More precisely, we study the $k$-OPT decision problem, which asks whether a given tour can be improved by a $k$-OPT move that replaces $k$ edges in the tour by $k$ new edges. A simple algorithm solves $k$-OPT in $O(nk)$ time for fixed $k$. For 2-OPT, this is easily seen to be optimal. For $k=3$ we prove that an algorithm with a runtime of the form $\tilde{O}(n{3-\epsilon})$ exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for $k=2,3$ may suggest that the actual time complexity of $k$-OPT is $\Theta(nk)$. We show that this is not the case, by presenting an algorithm that finds the best $k$-move in $O(n{\lfloor 2k/3 \rfloor + 1})$ time for fixed $k \geq 3$. This implies that 4-OPT can be solved in $O(n3)$ time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for $k=2$ in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.