Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Betweenness centrality profiles in trees (1607.02334v1)

Published 8 Jul 2016 in cs.SI and physics.soc-ph

Abstract: Betweenness centrality of a vertex in a graph measures the fraction of shortest paths going through the vertex. This is a basic notion for determining the importance of a vertex in a network. The k-betweenness centrality of a vertex is defined similarly, but only considers shortest paths of length at most k. The sequence of k-betweenness centralities for all possible values of k forms the betweenness centrality profile of a vertex. We study properties of betweenness centrality profiles in trees. We show that for scale-free random trees, for fixed k, the expectation of k-betweenness centrality strictly decreases as the index of the vertex increases. We also analyze worst-case properties of profiles in terms of the distance of profiles from being monotone, and the number of times pairs of profiles can cross. This is related to whether k-betweenness centrality, for small values of k, may be used instead of having to consider all shortest paths. Bounds are given that are optimal in order of magnitude. We also present some experimental results for scale-free random trees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.