Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Urban Social Media Inequality: Definition, Measurements, and Application (1607.01845v2)

Published 7 Jul 2016 in cs.SI and physics.soc-ph

Abstract: Social media content shared today in cities, such as Instagram images, their tags and descriptions, is the key form of contemporary city life. It tells people where activities and locations that interest them are and it allows them to share their urban experiences and self-representations. Therefore, any analysis of urban structures and cultures needs to consider social media activity. In our paper, we introduce the novel concept of social media inequality. This concept allows us to quantitatively compare patterns in social media activities between parts of a city, a number of cities, or any other spatial areas. We define this concept using an analogy with the concept of economic inequality. Economic inequality indicates how some economic characteristics or material resources, such as income, wealth or consumption are distributed in a city, country or between countries. Accordingly, we can define social media inequality as the measure of the distribution of characteristics from social media content shared in a particular geographic area or between areas. An example of such characteristics is the number of photos shared by all users of a social network such as Instagram in a given city or city area, or the content of these photos. We propose that the standard inequality measures used in other disciplines, such as the Gini coefficient, can also be used to characterize social media inequality. To test our ideas, we use a dataset of 7,442,454 public geo-coded Instagram images shared in Manhattan during five months (March-July) in 2014, and also selected data for 287 Census tracts in Manhattan. We compare patterns in Instagram sharing for locals and for visitors for all tracts, and also for hours in a 24-hour cycle. We also look at relations between social media inequality and socio-economic inequality using selected indicators for Census tracts.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.