Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rolling Horizon Coevolutionary Planning for Two-Player Video Games (1607.01730v1)

Published 6 Jul 2016 in cs.AI and cs.NE

Abstract: This paper describes a new algorithm for decision making in two-player real-time video games. As with Monte Carlo Tree Search, the algorithm can be used without heuristics and has been developed for use in general video game AI. The approach is to extend recent work on rolling horizon evolutionary planning, which has been shown to work well for single-player games, to two (or in principle many) player games. To select an action the algorithm co-evolves two (or in the general case N) populations, one for each player, where each individual is a sequence of actions for the respective player. The fitness of each individual is evaluated by playing it against a selection of action-sequences from the opposing population. When choosing an action to take in the game, the first action is chosen from the fittest member of the population for that player. The new algorithm is compared with a number of general video game AI algorithms on three variations of a two-player space battle game, with promising results.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.