Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Sampling and Greedy MAP Inference of Constrained Determinantal Point Processes (1607.01551v1)

Published 6 Jul 2016 in cs.DS, cs.LG, and math.PR

Abstract: Subset selection problems ask for a small, diverse yet representative subset of the given data. When pairwise similarities are captured by a kernel, the determinants of submatrices provide a measure of diversity or independence of items within a subset. Matroid theory gives another notion of independence, thus giving rise to optimization and sampling questions about Determinantal Point Processes (DPPs) under matroid constraints. Partition constraints, as a special case, arise naturally when incorporating additional labeling or clustering information, besides the kernel, in DPPs. Finding the maximum determinant submatrix under matroid constraints on its row/column indices has been previously studied. However, the corresponding question of sampling from DPPs under matroid constraints has been unresolved, beyond the simple cardinality constrained k-DPPs. We give the first polynomial time algorithm to sample exactly from DPPs under partition constraints, for any constant number of partitions. We complement this by a complexity theoretic barrier that rules out such a result under general matroid constraints. Our experiments indicate that partition-constrained DPPs offer more flexibility and more diversity than k-DPPs and their naive extensions, while being reasonably efficient in running time. We also show that a simple greedy initialization followed by local search gives improved approximation guarantees for the problem of MAP inference from k- DPPs on well-conditioned kernels. Our experiments show that this improvement is significant for larger values of k, supporting our theoretical result.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.