Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mixtures of Bivariate von Mises Distributions with Applications to Modelling of Protein Dihedral Angles (1607.01312v2)

Published 5 Jul 2016 in stat.ML and q-bio.QM

Abstract: The modelling of empirically observed data is commonly done using mixtures of probability distributions. In order to model angular data, directional probability distributions such as the bivariate von Mises (BVM) is typically used. The critical task involved in mixture modelling is to determine the optimal number of component probability distributions. We employ the Bayesian information-theoretic principle of minimum message length (MML) to distinguish mixture models by balancing the trade-off between the model's complexity and its goodness-of-fit to the data. We consider the problem of modelling angular data resulting from the spatial arrangement of protein structures using BVM distributions. The main contributions of the paper include the development of the mixture modelling apparatus along with the MML estimation of the parameters of the BVM distribution. We demonstrate that statistical inference using the MML framework supersedes the traditional methods and offers a mechanism to objectively determine models that are of practical significance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)