Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition (1607.01027v5)

Published 4 Jul 2016 in math.OC, cs.LG, cs.NA, and stat.ML

Abstract: In this paper, a new theory is developed for first-order stochastic convex optimization, showing that the global convergence rate is sufficiently quantified by a local growth rate of the objective function in a neighborhood of the optimal solutions. In particular, if the objective function $F(\mathbf w)$ in the $\epsilon$-sublevel set grows as fast as $|\mathbf w - \mathbf w_|2{1/\theta}$, where $\mathbf w$ represents the closest optimal solution to $\mathbf w$ and $\theta\in(0,1]$ quantifies the local growth rate, the iteration complexity of first-order stochastic optimization for achieving an $\epsilon$-optimal solution can be $\widetilde O(1/\epsilon{2(1-\theta)})$, which is optimal at most up to a logarithmic factor. To achieve the faster global convergence, we develop two different accelerated stochastic subgradient methods by iteratively solving the original problem approximately in a local region around a historical solution with the size of the local region gradually decreasing as the solution approaches the optimal set. Besides the theoretical improvements, this work also includes new contributions towards making the proposed algorithms practical: (i) we present practical variants of accelerated stochastic subgradient methods that can run without the knowledge of multiplicative growth constant and even the growth rate $\theta$; (ii) we consider a broad family of problems in machine learning to demonstrate that the proposed algorithms enjoy faster convergence than traditional stochastic subgradient method. We also characterize the complexity of the proposed algorithms for ensuring the gradient is small without the smoothness assumption.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.