Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? (1607.00971v1)

Published 4 Jul 2016 in cs.CV

Abstract: Autonomous driving is a challenging topic that requires complex solutions in perception tasks such as recognition of road, lanes, traffic signs or lights, vehicles and pedestrians. Through years of research, computer vision has grown capable of tackling these tasks with monocular detectors that can provide remarkable detection rates with relatively low processing times. However, the recent appearance of Convolutional Neural Networks (CNNs) has revolutionized the computer vision field and has made possible approaches to perform full pixel-wise semantic segmentation in times close to real time (even on hardware that can be carried on a vehicle). In this paper, we propose to use full image segmentation as an approach to simplify and unify most of the detection tasks required in the perception module of an autonomous vehicle, analyzing major concerns such as computation time and detection performance.

Citations (24)

Summary

We haven't generated a summary for this paper yet.