Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Modeling of Item-Difficulty for Ontology-based MCQs (1607.00869v1)

Published 4 Jul 2016 in cs.AI

Abstract: Multiple choice questions (MCQs) that can be generated from a domain ontology can significantly reduce human effort & time required for authoring & administering assessments in an e-Learning environment. Even though here are various methods for generating MCQs from ontologies, methods for determining the difficulty-levels of such MCQs are less explored. In this paper, we study various aspects and factors that are involved in determining the difficulty-score of an MCQ, and propose an ontology-based model for the prediction. This model characterizes the difficulty values associated with the stem and choice set of the MCQs, and describes a measure which combines both the scores. Further more, the notion of assigning difficultly-scores based on the skill level of the test taker is utilized for predicating difficulty-score of a stem. We studied the effectiveness of the predicted difficulty-scores with the help of a psychometric model from the Item Response Theory, by involving real-students and domain experts. Our results show that, the predicated difficulty-levels of the MCQs are having high correlation with their actual difficulty-levels.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.