Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Time for dithering: fast and quantized random embeddings via the restricted isometry property (1607.00816v3)

Published 4 Jul 2016 in cs.IT and math.IT

Abstract: Recently, many works have focused on the characterization of non-linear dimensionality reduction methods obtained by quantizing linear embeddings, e.g., to reach fast processing time, efficient data compression procedures, novel geometry-preserving embeddings or to estimate the information/bits stored in this reduced data representation. In this work, we prove that many linear maps known to respect the restricted isometry property (RIP) can induce a quantized random embedding with controllable multiplicative and additive distortions with respect to the pairwise distances of the data points beings considered. In other words, linear matrices having fast matrix-vector multiplication algorithms (e.g., based on partial Fourier ensembles or on the adjacency matrix of unbalanced expanders) can be readily used in the definition of fast quantized embeddings with small distortions. This implication is made possible by applying right after the linear map an additive and random "dither" that stabilizes the impact of the uniform scalar quantization operator applied afterwards. For different categories of RIP matrices, i.e., for different linear embeddings of a metric space $(\mathcal K \subset \mathbb Rn, \ell_q)$ in $(\mathbb Rm, \ell_p)$ with $p,q \geq 1$, we derive upper bounds on the additive distortion induced by quantization, showing that it decays either when the embedding dimension $m$ increases or when the distance of a pair of embedded vectors in $\mathcal K$ decreases. Finally, we develop a novel "bi-dithered" quantization scheme, which allows for a reduced distortion that decreases when the embedding dimension grows and independently of the considered pair of vectors.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.