Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Privacy-driven Access Control in Social Networks by Means of Automatic Semantic Annotation (1607.00782v1)

Published 4 Jul 2016 in cs.SI, cs.CR, and cs.CY

Abstract: In online social networks (OSN), users quite usually disclose sensitive information about themselves by publishing messages. At the same time, they are (in many cases) unable to properly manage the access to this sensitive information due to the following issues: i) the rigidness of the access control mechanism implemented by the OSN, and ii) many users lack of technical knowledge about data privacy and access control. To tackle these limitations, in this paper, we propose a dynamic, transparent and privacy-driven access control mechanism for textual messages published in OSNs. The notion of privacy-driven is achieved by analyzing the semantics of the messages to be published and, according to that, assessing the degree of sensitiveness of their contents. For this purpose, the proposed system relies on an automatic semantic annotation mechanism that, by using knowledge bases and linguistic tools, is able to associate a meaning to the information to be published. By means of this annotation, our mechanism automatically detects the information that is sensitive according to the privacy requirements of the publisher of data, with regard to the type of reader that may access such data. Finally, our access control mechanism automatically creates sanitized versions of the users' publications according to the type of reader that accesses them. As a result, our proposal, which can be integrated in already existing social networks, provides an automatic, seamless and content-driven protection of user publications, which are coherent with her privacy requirements and the type of readers that access them. Complementary to the system design, we also discuss the feasibility of the system by illustrating it through a real example and evaluate its accuracy and effectiveness over standard approaches.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube