Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks (1607.00497v1)

Published 2 Jul 2016 in cs.CR

Abstract: In the last several decades, the automotive industry has come to incorporate the latest Information and Communications (ICT) technology, increasingly replacing mechanical components of vehicles with electronic components. These electronic control units (ECUs) communicate with each other in an in-vehicle network that makes the vehicle both safer and easier to drive. Controller Area Networks (CANs) are the current standard for such high quality in-vehicle communication. Unfortunately, however, CANs do not currently offer protection against security attacks. In particular, they do not allow for message authentication and hence are open to attacks that replay ECU messages for malicious purposes. Applying the classic cryptographic method of message authentication code (MAC) is not feasible since the CAN data frame is not long enough to include a sufficiently long MAC to provide effective authentication. In this paper, we propose a novel identification method, which works in the physical layer of an in-vehicle CAN network. Our method identifies ECUs using inimitable characteristics of signals enabling detection of a compromised or alien ECU being used in a replay attack. Unlike previous attempts to address security issues in the in-vehicle CAN network, our method works by simply adding a monitoring unit to the existing network, making it deployable in current systems and compliant with required CAN standards. Our experimental results show that the bit string and classification algorithm that we utilized yielded more accurate identification of compromised ECUs than any other method proposed to date. The false positive rate is more than 2 times lower than the method proposed by P.-S. Murvay et al. This paper is also the first to identify potential attack models that systems should be able to detect.

Citations (137)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.