Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A scaled Bregman theorem with applications (1607.00360v1)

Published 1 Jul 2016 in cs.LG and stat.ML

Abstract: Bregman divergences play a central role in the design and analysis of a range of machine learning algorithms. This paper explores the use of Bregman divergences to establish reductions between such algorithms and their analyses. We present a new scaled isodistortion theorem involving Bregman divergences (scaled Bregman theorem for short) which shows that certain "Bregman distortions'" (employing a potentially non-convex generator) may be exactly re-written as a scaled Bregman divergence computed over transformed data. Admissible distortions include geodesic distances on curved manifolds and projections or gauge-normalisation, while admissible data include scalars, vectors and matrices. Our theorem allows one to leverage to the wealth and convenience of Bregman divergences when analysing algorithms relying on the aforementioned Bregman distortions. We illustrate this with three novel applications of our theorem: a reduction from multi-class density ratio to class-probability estimation, a new adaptive projection free yet norm-enforcing dual norm mirror descent algorithm, and a reduction from clustering on flat manifolds to clustering on curved manifolds. Experiments on each of these domains validate the analyses and suggest that the scaled Bregman theorem might be a worthy addition to the popular handful of Bregman divergence properties that have been pervasive in machine learning.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.