Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Moving Toward High Precision Dynamical Modelling in Hidden Markov Models (1607.00359v1)

Published 1 Jul 2016 in cs.CL

Abstract: Hidden Markov Model (HMM) is often regarded as the dynamical model of choice in many fields and applications. It is also at the heart of most state-of-the-art speech recognition systems since the 70's. However, from Gaussian mixture models HMMs (GMM-HMM) to deep neural network HMMs (DNN-HMM), the underlying Markovian chain of state-of-the-art models did not changed much. The "left-to-right" topology is mostly always employed because very few other alternatives exist. In this paper, we propose that finely-tuned HMM topologies are essential for precise temporal modelling and that this approach should be investigated in state-of-the-art HMM system. As such, we propose a proof-of-concept framework for learning efficient topologies by pruning down complex generic models. Speech recognition experiments that were conducted indicate that complex time dependencies can be better learned by this approach than with classical "left-to-right" models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.