Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Design of a high-performance GEMM-like Tensor-Tensor Multiplication (1607.00145v3)

Published 1 Jul 2016 in cs.MS and cs.PF

Abstract: We present "GEMM-like Tensor-Tensor multiplication" (GETT), a novel approach to tensor contractions that mirrors the design of a high-performance general matrix-matrix multiplication (GEMM). The critical insight behind GETT is the identification of three index sets, involved in the tensor contraction, which enable us to systematically reduce an arbitrary tensor contraction to loops around a highly tuned "macro-kernel". This macro-kernel operates on suitably prepared ("packed") sub-tensors that reside in a specified level of the cache hierarchy. In contrast to previous approaches to tensor contractions, GETT exhibits desirable features such as unit-stride memory accesses, cache-awareness, as well as full vectorization, without requiring auxiliary memory. To compare our technique with other modern tensor contractions, we integrate GETT alongside the so called Transpose-Transpose-GEMM-Transpose and Loops-over-GEMM approaches into an open source "Tensor Contraction Code Generator" (TCCG). The performance results for a wide range of tensor contractions suggest that GETT has the potential of becoming the method of choice: While GETT exhibits excellent performance across the board, its effectiveness for bandwidth-bound tensor contractions is especially impressive, outperforming existing approaches by up to $12.4\times$. More precisely, GETT achieves speedups of up to $1.41\times$ over an equivalent-sized GEMM for bandwidth-bound tensor contractions while attaining up to $91.3\%$ of peak floating-point performance for compute-bound tensor contractions.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube