Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations (1607.00084v2)

Published 1 Jul 2016 in stat.ML

Abstract: The problem of finding overlapping communities in networks has gained much attention recently. Optimization-based approaches use non-negative matrix factorization (NMF) or variants, but the global optimum cannot be provably attained in general. Model-based approaches, such as the popular mixed-membership stochastic blockmodel or MMSB (Airoldi et al., 2008), use parameters for each node to specify the overlapping communities, but standard inference techniques cannot guarantee consistency. We link the two approaches, by (a) establishing sufficient conditions for the symmetric NMF optimization to have a unique solution under MMSB, and (b) proposing a computationally efficient algorithm called GeoNMF that is provably optimal and hence consistent for a broad parameter regime. We demonstrate its accuracy on both simulated and real-world datasets.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube