Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exploring Prediction Uncertainty in Machine Translation Quality Estimation (1606.09600v1)

Published 30 Jun 2016 in cs.CL

Abstract: Machine Translation Quality Estimation is a notoriously difficult task, which lessens its usefulness in real-world translation environments. Such scenarios can be improved if quality predictions are accompanied by a measure of uncertainty. However, models in this task are traditionally evaluated only in terms of point estimate metrics, which do not take prediction uncertainty into account. We investigate probabilistic methods for Quality Estimation that can provide well-calibrated uncertainty estimates and evaluate them in terms of their full posterior predictive distributions. We also show how this posterior information can be useful in an asymmetric risk scenario, which aims to capture typical situations in translation workflows.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube