Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Knowledge-Based Resource Discovery for Internet of Things (1606.08968v1)

Published 29 Jun 2016 in cs.NI

Abstract: In the sensing as a service paradigm, Internet of Things (IoT) Middleware platforms allow data consumers to retrieve the data they want without knowing the underlying technical details of IoT resources (i.e. sensors and data processing components). However, configuring an IoT middleware platform and retrieving data is a significant challenge for data consumers as it requires both technical knowledge and domain expertise. In this paper, we propose a knowledge driven approach called Context Aware Sensor Configuration Model (CASCOM) to simplify the process of configuring IoT middleware platforms, so the data consumers, specifically non-technical personnel, can easily retrieve the data they required. In this paper, we demonstrate how IoT resources can be described using semantics in such away that they can later be used to compose service work-flows. Such automated semantic-knowledge based IoT resource composition approach advances the current research. We demonstrate the feasibility and the usability of our approach through a prototype implementation based on an IoT middleware called Global Sensor Networks (GSN), though our model can be generalized to any other middleware platform.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.