Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Several Classes of Negabent Functions over Finite Fields (1606.08952v1)

Published 29 Jun 2016 in cs.IT and math.IT

Abstract: Negabent functions as a class of generalized bent functions have attracted a lot of attention recently due to their applications in cryptography and coding theory. In this paper, we consider the constructions of negabent functions over finite fields. First, by using the compositional inverses of certain binomial and trinomial permutations, we present several classes of negabent functions of the form $f(x)=\Tr_1n(\lambda x{2k+1})+\Tr_1n(ux)\Tr_1n(vx)$, where $\lambda\in \F_{2n}$, $2\leq k\leq n-1$, $(u,v)\in \F*_{2n}\times \F*_{2n}$, and $\Tr_1n(\cdot)$ is the trace function from $\F_{2n}$ to $\F_{2}$. Second, by using Kloosterman sum, we prove that the condition for the cubic monomials given by Zhou and Qu (Cryptogr. Commun., to appear, DOI 10.1007/s12095-015-0167-0.) to be negabent is also necessary. In addition, a conjecture on negabent monomials whose exponents are of Niho type is given.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.