Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Degree-correlation, robustness, and vulnerability in finite scale-free networks (1606.08768v3)

Published 28 Jun 2016 in physics.soc-ph, cs.SI, math.CO, and q-bio.PE

Abstract: Many naturally occurring networks have a power-law degree distribution as well as a non-zero degree correlation. Despite this, most studies analyzing the robustness to random node-deletion and vulnerability to targeted node-deletion have concentrated only on power-law degree distribution and ignored degree correlation. This study looks specifically at the effect degree-correlation has on robustness and vulnerability in scale-free networks. Our results confirm Newman's finding that positive degree-correlation increases robustness and decreases vulnerability. However, we found that networks with positive degree-correlation are more vulnerable to random node-deletion than to targeted deletion methods that utilize knowledge of initial node-degree only. Targeted deletion sufficiently alters the topology of the network to render this method less effective than uniform random methods unless changes in topology are accounted for. This result indicates the importance of degree correlation in certain network applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.