Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree-correlation, robustness, and vulnerability in finite scale-free networks (1606.08768v3)

Published 28 Jun 2016 in physics.soc-ph, cs.SI, math.CO, and q-bio.PE

Abstract: Many naturally occurring networks have a power-law degree distribution as well as a non-zero degree correlation. Despite this, most studies analyzing the robustness to random node-deletion and vulnerability to targeted node-deletion have concentrated only on power-law degree distribution and ignored degree correlation. This study looks specifically at the effect degree-correlation has on robustness and vulnerability in scale-free networks. Our results confirm Newman's finding that positive degree-correlation increases robustness and decreases vulnerability. However, we found that networks with positive degree-correlation are more vulnerable to random node-deletion than to targeted deletion methods that utilize knowledge of initial node-degree only. Targeted deletion sufficiently alters the topology of the network to render this method less effective than uniform random methods unless changes in topology are accounted for. This result indicates the importance of degree correlation in certain network applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jeremy F. Alm (29 papers)
  2. Keenan M. L. Mack (2 papers)

Summary

We haven't generated a summary for this paper yet.