Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Using Sequence Ensembles for Seeding Alignments of MinION Sequencing Data (1606.08719v1)

Published 28 Jun 2016 in cs.DS and q-bio.GN

Abstract: Oxford Nanopore MinION sequencer is currently the smallest sequencing device available. While being able to produce very long reads (reads of up to 100~kbp were reported), it is prone to high sequencing error rates of up to 30%. Since most of these errors are insertions or deletions, it is very difficult to adapt popular seed-based algorithms designed for aligning data sets with much lower error rates. Base calling of MinION reads is typically done using hidden Markov models. In this paper, we propose to represent each sequencing read by an ensemble of sequences sampled from such a probabilistic model. This approach can improve the sensitivity and false positive rate of seeding an alignment compared to using a single representative base call sequence for each read.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.