Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compiler-Assisted Workload Consolidation For Efficient Dynamic Parallelism on GPU (1606.08150v1)

Published 27 Jun 2016 in cs.DC

Abstract: GPUs have been widely used to accelerate computations exhibiting simple patterns of parallelism - such as flat or two-level parallelism - and a degree of parallelism that can be statically determined based on the size of the input dataset. However, the effective use of GPUs for algorithms exhibiting complex patterns of parallelism, possibly known only at runtime, is still an open problem. Recently, Nvidia has introduced Dynamic Parallelism (DP) in its GPUs. By making it possible to launch kernels directly from GPU threads, this feature enables nested parallelism at runtime. However, the effective use of DP must still be understood: a naive use of this feature may suffer from significant runtime overhead and lead to GPU underutilization, resulting in poor performance. In this work, we target this problem. First, we demonstrate how a naive use of DP can result in poor performance. Second, we propose three workload consolidation schemes to improve performance and hardware utilization of DP-based codes, and we implement these code transformations in a directive-based compiler. Finally, we evaluate our framework on two categories of applications: algorithms including irregular loops and algorithms exhibiting parallel recursion. Our experiments show that our approach significantly reduces runtime overhead and improves GPU utilization, leading to speedup factors from 90x to 3300x over basic DP-based solutions and speedups from 2x to 6x over flat implementations.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.