Papers
Topics
Authors
Recent
2000 character limit reached

Summarizing Decisions in Spoken Meetings (1606.07965v1)

Published 25 Jun 2016 in cs.CL

Abstract: This paper addresses the problem of summarizing decisions in spoken meetings: our goal is to produce a concise {\it decision abstract} for each meeting decision. We explore and compare token-level and dialogue act-level automatic summarization methods using both unsupervised and supervised learning frameworks. In the supervised summarization setting, and given true clusterings of decision-related utterances, we find that token-level summaries that employ discourse context can approach an upper bound for decision abstracts derived directly from dialogue acts. In the unsupervised summarization setting,we find that summaries based on unsupervised partitioning of decision-related utterances perform comparably to those based on partitions generated using supervised techniques (0.22 ROUGE-F1 using LDA-based topic models vs. 0.23 using SVMs).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.