Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Matroid Online Bipartite Matching and Vertex Cover (1606.07863v1)

Published 25 Jun 2016 in cs.DS

Abstract: The Adwords and Online Bipartite Matching problems have enjoyed a renewed attention over the past decade due to their connection to Internet advertising. Our community has contributed, among other things, new models (notably stochastic) and extensions to the classical formulations to address the issues that arise from practical needs. In this paper, we propose a new generalization based on matroids and show that many of the previous results extend to this more general setting. Because of the rich structures and expressive power of matroids, our new setting is potentially of interest both in theory and in practice. In the classical version of the problem, the offline side of a bipartite graph is known initially while vertices from the online side arrive one at a time along with their incident edges. The objective is to maintain a decent approximate matching from which no edge can be removed. Our generalization, called Matroid Online Bipartite Matching, additionally requires that the set of matched offline vertices be independent in a given matroid. In particular, the case of partition matroids corresponds to the natural scenario where each advertiser manages multiple ads with a fixed total budget. Our algorithms attain the same performance as the classical version of the problems considered, which are often provably the best possible. We present $1-1/e$-competitive algorithms for Matroid Online Bipartite Matching under the small bid assumption, as well as a $1-1/e$-competitive algorithm for Matroid Online Bipartite Matching in the random arrival model. A key technical ingredient of our results is a carefully designed primal-dual waterfilling procedure that accommodates for matroid constraints. This is inspired by the extension of our recent charging scheme for Online Bipartite Vertex Cover.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.