Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Riccati observers for position and velocity bias estimation from either direction or range measurements (1606.07735v2)

Published 24 Jun 2016 in cs.SY

Abstract: This paper revisits the problems of estimating the position of an object moving in $n$ ($\geq 2$)-dimensional Euclidean space using velocity measurements and either direction or range measurements of one or multiple source points. The proposed solutions exploit the Continuous Riccati Equation (CRE) to calculate observer gains yielding global exponential stability of zero estimation errors, even in the case where the measured velocity is biased by an unknown constant perturbation. These results are obtained under persistent excitation (p.e.) conditions depending on the number of source points and body motion that ensure both uniform observability and good conditioning of the CRE solutions. With respect to prior contributions on these subjects some of the proposed solutions are entirely novel while others are adapted from existing ones with the preoccupation of stating simpler and more explicit conditions under which uniform exponential stability is achieved. A complementary contribution, related to the delicate tuning of the observers gains, is the derivation of a lower-bound of the exponential rate of convergence specified as a function of the amount of persistent excitation. Simulation results illustrate the performance of the proposed observers.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube