Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptability of Neural Networks on Varying Granularity IR Tasks (1606.07565v1)

Published 24 Jun 2016 in cs.IR and cs.CL

Abstract: Recent work in Information Retrieval (IR) using Deep Learning models has yielded state of the art results on a variety of IR tasks. Deep neural networks (DNN) are capable of learning ideal representations of data during the training process, removing the need for independently extracting features. However, the structures of these DNNs are often tailored to perform on specific datasets. In addition, IR tasks deal with text at varying levels of granularity from single factoids to documents containing thousands of words. In this paper, we examine the role of the granularity on the performance of common state of the art DNN structures in IR.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.