Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Recurrent Neural Networks for Supernovae Classification (1606.07442v2)

Published 23 Jun 2016 in astro-ph.IM, astro-ph.CO, cs.LG, and physics.data-an

Abstract: We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae\footnote{Code available at \href{https://github.com/adammoss/supernovae}{https://github.com/adammoss/supernovae}}. The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50\% of the representational SPCC dataset (around $104$ supernovae) we obtain a type-Ia vs. non-type-Ia classification accuracy of 94.7\%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and a SPCC figure-of-merit $F_1=0.64$. When using only the data for the early-epoch challenge defined by the SPCC we achieve a classification accuracy of 93.1\%, AUC of 0.977 and $F_1=0.58$, results almost as good as with the whole light-curve. By employing bidirectional neural networks we can acquire impressive classification results between supernovae types -I,~-II and~-III at an accuracy of 90.4\% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time, and show it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)